
CS6200
Information Retrieval

Jesse Anderton
College of Computer and Information Science

Northeastern University

Query Process

IR Evaluation
• Evaluation is any process which produces a

quantifiable measure of a system’s performance.

• In IR, there are many things we might want to measure:

➡ Are we presenting users with relevant documents?

➡ How long does it take to show the result list?

➡ Are our query suggestions useful?

➡ Is our presentation useful?

➡ Is our site appealing (from a marketing perspective)?

IR Evaluation
• The things we want to evaluate are often subjective, so it’s

frequently not possible to define a “correct answer.”

• Most IR evaluation is comparative: “Is system A or system
B better?”

➡ You can present system A to some users and system B
to others and see which users are more satisfied (“A/B
testing”)

➡ You can randomly mix the results of A and B and see
which system’s results get more clicks

➡ You can treat the output from system A as “ground truth”
and compare system B to it

Binary Relevance

Binary Relevance | Graded Relevance | Multiple Queries
Test Collections | Ranking for Web Search

Retrieval Effectiveness
• Retrieval effectiveness is the

most common evaluation task
in IR

• Given two ranked lists of
documents, which is better?

➡ A better list contains more
relevant documents

➡ A better list has relevant
documents closer to the top

• But what does “relevant” mean
and how can we measure it?

Relevant

Non-Relevant

Non-Relevant

Relevant

Non-Relevant

List A

Non-Relevant

Relevant

Relevant

Non-Relevant

Relevant

List B

Relevance
• The meaning of relevance is actively debated, and effects how

we build rankers and choose evaluation metrics.

• In general, it means something like how “useful” a document is
as a response to a particular query.

• In practice, we adopt a working definition in a given setting
which approximates what we mean.

➡ Page-finding queries: there is only one relevant document;
the URL of the desired page.

➡ Information gathering queries: a document is relevant if it
contains any portion of the desired information.

Ambiguity of Relevance
• The ambiguity of relevance is closely tied to the ambiguity of

a query’s underlying information need

• Relevance is not independent of the user’s language fluency,
literacy level, etc.

• Document relevance may depend on more than just the
document and the query. (Isn’t true information more relevant
than false information? But how can you tell the difference?)

• Relevance might not be independent of the ranking: if a user
has already seen document A, can that change whether
document B is relevant?

Binary Relevance
• For now, let’s assume that a

document is entirely relevant
or entirely non-relevant to a
query.

• This allows us to represent a
ranking as a vector of bits
representing the relevance of
the document at each rank.

• Binary relevance metrics can
be defined as functions of this
vector.

Relevant

Non-Relevant

Non-Relevant

Relevant

Non-Relevant

List A

~r =

0

BBBB@

1
0
0
1
0

1

CCCCA

Recall
• Recall is the fraction of all

possible relevant documents
which your list contains.

!

!

!

• Recall@K is almost identical,
but truncates your list to the
top K elements first.

Relevant

Non-Relevant

Non-Relevant

Relevant

Non-Relevant

List A

~r =

0

BBBB@

1
0
0
1
0

1

CCCCA

R = 10

recall(~r) =
2

10

recall@k(~r, 3) =
1

10

recall@k(~r, k) =
1

R

kX

i

ri

recall(~r) =
1

R

X

i

ri

=
rel(~r)

R
= Pr(retrieved|relevant)

Precision
• Precision is the fraction of

your list which is relevant.

!

!

!

• Precision@K truncates your
list to the top K elements.

Relevant

Non-Relevant

Non-Relevant

Relevant

Non-Relevant

List A

~r =

0

BBBB@

1
0
0
1
0

1

CCCCA

prec@k(~r, k) =
1

k

kX

i

ri

prec(~r) =
2

5

prec@k(~r, 3) =
1

3

prec(~r) =
1

|~r|
X

i

ri

=
rel(~r)

|~r|
= Pr(relevant|retrieved)

Recall vs. Precision
• Neither recall nor precision is sufficient to describe a

ranking’s performance.

➡ How to get perfect recall: retrieve all documents

➡ How to get perfect precision: retrieve the one best
document

• Most tasks find it relatively easy to get high recall or high
precision, but doing well at both is harder.

• We want to evaluate a system by looking at how precision
and recall are related.

F Measure
• The F Measure is one way to combine precision and recall

into a single value.

!

• We commonly use the F1 Measure:

!

• F1 is the harmonic mean of precision and recall.

• This heavily penalizes low precision and low recall. Its
value is closer to whichever is smaller.

F (~r,�) =
(�2 + 1) · prec(~r) · recall(~r)
�2 · prec(~r) + recall(~r)

F1(~r) = F (~r,� = 1) =
2 · prec(~r) · recall(~r)
prec(~r) + recall(~r)

R-Precision
• Instead of using a cutoff based on the number of documents, use a

cutoff for precision based on the recall score (or vice versa)

!

• As you move down the list:

➡ recall increases monotonically

➡ precision goes up and down, with an overall downward trend

• R-Precision is the precision at the point in the list where the two
metrics cross.

prec@r(~s, r) = prec@k(~s, k : recall@k(~s, k) = r)

recall@p(~s, p) = recall@k(~s, k : prec@k(~s, k) = p)

rprec(~s) = prec@k(~s, k : recall@k(~s, k) = prec@k(~s, k))

Average Precision
• Average Precision is the mean of prec@k for every k

which indicates a relevant document.

!

!

• Example:

!
~r =

0

BBBB@

1
0
0
1
0

1

CCCCA

�recall(~s, k) = recall@k(~s, k)� recall@k(~s, k � 1)

ap(~s) =
X

k:rel(sk)

prec@k(~s, k) ·�recall(~s, k)

�recall =

0

BBBB@

0.5
0
0
0.5
0

1

CCCCA

ap = (1 · 0.5) + (1/2 · 0.5)
= 0.5 + 0.25

= 0.75

prec@k =

0

BBBB@

1
1/2
1/3
1/2
2/5

1

CCCCA

Precision-Recall Curves
• A Precision-Recall Curve is a plot of precision versus

recall at the ranks of relevant documents.

• Average Precision is the area beneath the PR Curve.

!

!

!

Graded Relevance

Binary Relevance | Graded Relevance | Multiple Queries
Test Collections | Ranking for Web Search

Graded Relevance
• So far, we have dealt only with binary relevance

• It is sometimes useful to take a more nuanced view:
two documents might both be relevant, but one
might be better than the other.

• Instead of using relevance labels in {0,1}, we can
use different values to indicate more relevant
documents.

• We commonly use {0, 1, 2, 3, 4}

Ambiguity of
Graded Relevance

• This adds its own ambiguity problems.

• It’s hard enough to define “relevant vs. non-relevant,” let alone
“somewhat relevant” versus “relevant” versus “highly relevant.”

• Expert human judges often disagree about the proper
relevance grade for a document.

➡ Some judges are stricter, and only assign high grades to the
very best documents.

➡ Some judges are more generous, and assign higher grades
even to weaker documents.

A Graded Relevance Scale
• Here is one possible scale to use.

➡ Grade 0: Non-relevant documents. These documents do not answer the
query at all (but might contain query terms!)

➡ Grade 1: Somewhat relevant documents. These documents are on the right
topic, but have incomplete information about the query.

➡ Grade 2: Relevant documents. These documents do a reasonably good job
of answering the query, but the information might be slightly incomplete or
not well-presented.

➡ Grade 3: Highly relevant documents. These documents are an excellent
reference on the query and completely answer it.

➡ Grade 4: Nav documents. These documents are the “single relevant
document” for navigational queries.

Cumulative Gain
• Cumulative Gain is the total

relevance score accumulated at a
particular rank.

!

!

• This tries to measure the gain a
user collects by reading the
documents in the list.

• Problems: CG doesn’t reflect the
order of the documents, and
treats a 4 at position 100 the same
as a 4 at position 1.

Grade 2

Grade 0

Grade 0

Grade 3

Grade 0

List A

CG(~r, k) =
kX

i=1

rk ~r =

0

BBBB@

2
0
0
3
0

1

CCCCA

CG(~r, 3) = 2

CG(~r, 5) = 5

Discounted Cumulative Gain
• Discounted Cumulative Gain

applies some discount function to
CG in order to punish rankings that
put relevant documents lower in the
list.

!

!

• Various discount functions are used,
but log() is fairly popular.

• A problem: the maximum value
depends on the distribution of
grades for this particular query, so
comparing across queries is hard.

Grade 2

Grade 0

Grade 0

Grade 3

Grade 0

List A

~r =

0

BBBB@

2
0
0
3
0

1

CCCCADCG(~r, k) = r1 +
kX

i=2

rk
log2 k

DCG(~r, 3) = 2

DCG(~r, 5) = 2 +
3

2
= 3.5

Normalized Discounted
Cumulative Gain

• Normalized Discounted
Cumulative Gain divides DCG
by the best possible value for
that query, the Ideal DCG
(IDCG).

!

!

• IDCG(k) is calculated by sorting
all the documents in the
collection in order of decreasing
relevance grade, and then
calculating DCG at cutoff k.

Grade 2

Grade 0

Grade 0

Grade 3

Grade 0

List A

~r =

0

BBBB@

2
0
0
3
0

1

CCCCA

nDCG(~r, k) =
DCG(~r, k)

IDCG(k)

~c =

0

BBBBBBBBBB@

3
3
2
1
0
0
0
0

1

CCCCCCCCCCA

IDCG(3) = DCG(~c, 3)

= 3 +

3

log2 2
+

2

log2 3

⇡ 7.26

nDCG(~r, 3) =
DCG(~4, 3)

IDCG(3)

⇡ 2/7.26

⇡ 0.275

Multiple Queries

Binary Relevance | Graded Relevance | Multiple Queries
Test Collections | Ranking for Web Search

Using Multiple Queries
• It isn’t usually fair to compare system performance on

a single query. What if the better system just got lucky?

• Instead, we commonly run both systems on a
collection of different queries and compare metric
values across all queries.

➡ Individual queries can still be useful. Look for
distinctive queries: a system’s best or worst query,
the queries for which the overall worse system beats
the overall better system, etc.

Mean Metric Values
• One common way to combine information across

queries is simply to take the mean of the metric
over the queries.

• Mean Average Precision (MAP) is the average AP
value for a system across many queries.

➡ This is one of the most popular evaluation
metrics when using binary relevance.

Significance Tests
• Suppose System A beats System B on just one query. Do we believe it’s

better?

• Maybe System B would beat System A on some other query.

• How many queries do we need to try before we can be confident of the
result?

➡ Empirical results show that 25 queries are often enough

➡ TREC generally uses at least 50 queries

• What if the systems are identical for all but one query, for which A is
better? A would have a higher average than B…

• What if A’s average is just 0.0001% higher than B’s average? Is it better?

• Statistical significance tests help us determine whether
the observed differences in two systems are likely to be
due to chance (or “luck”).

• One-Sample Tests: “Is the system’s response time
under one second?”

• Two-Sample Tests: “Does the system perform equally
well on these two queries?”

• Paired-Sample Tests: “Is System A better than System
B?”

Significance Tests

Statistical Terminology
• Populations are sets of objects of interest

➡ e.g. all possible queries

• Samples are objects drawn from the population

➡ e.g. the particular queries you’re testing with

• Statistics are functions of data

➡ e.g. A system’s AP on a particular query

• We calculate our statistics on a sample of the population to test a
hypothesis (e.g. “System A is better than System B”) for the entire
population.

Hypothesis Testing
• A significance test allows us to measure the probability that a result

we observe happened by chance.

• We compare the probability of two possible hypotheses:

➡ The null hypothesis: “Systems A and B are not different”

➡ The alternative hypothesis: “System A is better than System B”

• The power of a hypothesis test is the probability that it will correctly
reject the null hypothesis.

• A test’s power can be increased by increasing the number of
queries in the experiment.

Hypothesis Testing
1.Compute the effectiveness measure for every query for both
systems.

2.Compute a test statistic based on comparing the two systems’
measures for each query. The details of this step depend on the
particular test you’re using.

3.The test statistic is used to compute a P-value: the probability that
a test statistic value at least that extreme could be observed if the
null hypothesis were true. The smaller the p-value is, the more
confidently we can reject the null hypothesis.

4.We reject the null hypothesis if the p-value is smaller than some
predetermined value, the significance level. The significance level
is small: the smaller, the better. It should be at most 0.05.

• The distribution of possible test statistic values,
assuming that the null hypothesis is true:

!

!

!

!

• The shaded area is the region of rejection

One-Sided Test

Example Experimental
Results

t-Test
• Assumes that the difference between the

effectiveness values is a sample from a normal
distribution

• The null hypothesis is that the mean of the
distribution of differences is zero

• The test statistic is:

• Example:

t =
B �A

�B�A
·
p
N

B �A = 21.4,�B�A = 29.1; t = 2.33, p-value = 0.02

Wilcoxon Signed-Ranks Test
• A nonparametric test based on the differences between

effectiveness scores

• Test statistic is:

• N is the number of differences. Ri is a signed-rank.

• To compute the signed-ranks, the differences are ordered
by their absolute values (increasing) and then assigned
rank values.

• Rank values are then given the sign of the original
difference.

w =
NX

i=1

Ri

Wilcoxon Example
• 9 non-zero differences are (in rank order of absolute

value):

2, 9, 10, 24, 25, 25, 41, 60, 70

• Signed-ranks:

-1, +2, +3, -4, +5.5, +5.5, +7, +8, +9

• Test statistic:

w = 35, p-value = 0.025

Test Collections

Binary Relevance | Graded Relevance | Multiple Queries
Test Collections | Ranking for Web Search

Test Collections
• Several organizations have built standard

collections of documents, queries, and relevance
judgements for use in IR evaluation.

• These test collections allow the comparison of
systems across many teams and publications by
providing a standard measure of performance.

• These collections are used more in research than
industry, as we’ll see later.

TREC
• The Text Retrieval Conference was established in 1992

to construct large-scale IR test collections

➡ Run by NIST’s Information Access Division

➡ Initially sponsored by DARPA as part of Tipster
program

• Probably the best-known IR evaluation setting, with
participants from dozens of countries

• Proceedings are available from http://trec.nist.gov

TREC Tracks
• TREC is organized into roughly a dozen independent research tracks each

year, often run by volunteers outside of NIST.

➡ November: tracks approved by TREC community

➡ Winter: track members finalize format for track

➡ Spring: researchers train systems based on track specification

➡ Summer: researchers carry out formal evaluation (usually “blind” – the
researchers do not know the answer)

➡ Fall: NIST carries out evaluation

➡ November: Group meeting (at NIST) to find out how well your
submission did, and what other track members tried

TREC Tracks
• Examples of TREC tracks:

➡ Ad-hoc retrieval: classic keyword document search.

➡ Question answering: responding to questions with
factoids instead of with documents.

➡ Crowdsourcing test collections: can we collect accurate
relevance grades from anonymous crowd workers?

➡ Temporal summarization: How much was known about
event e at time t?

TREC Topic Example

Historically Important
Collections

• CACM: titles and abstracts from the Communications of the
ACM from 1958-1979. Queries and relevance judgements
generated by computer scientists.

• AP: Associated Press newswire documents from 1988-1990
(from TREC disks 1-3). Queries are the title fields from
TREC topics 51-150. Topics and relevance judgements
generated by government information analysts.

• GOV2: Web pages crawled from websites in the .gov
domain during early 2004. Queries are the title fields from
TREC topics 701-850. Topics and relevance judgements
generated by government analysts.

Historically Important
Collections

Recent Collections
• TREC8 (1999): A very thoroughly-evaluated collection of

documents and queries. Considered to have very accurate
relevance scores for the documents, but the documents and
queries are not ideal for modern web search.

• CLUEWEB09 (2009): A 25TB crawl of the web containing
1,040,809,705 web pages in 10 languages. Fewer queries
and relevance grades available (largely because of its scale).

• CLUEWEB12 (2012): A collection of 733,019,372 English web
pages crawled in early 2012. Fewer queries and relevance
grades available. Used by many current TREC tracks.

Pooling
• The large size of recent collections makes judging all documents for a

query impractical.

• At TREC, a technique called pooling is used to compare the performance
of several submitted runs.

➡ Each team submits one or more rankings produced by their system(s).

➡ The top k results from each ranking are merged into a pool.

➡ Duplicates are removed.

➡ The documents are presented to human judges in random order.

• This produces a large number of relevance judgements for each query,
although still incomplete

Ranking for
Web Search

Binary Relevance | Graded Relevance | Multiple Queries
Test Collections | Ranking for Web Search

Search Engine Evaluation
• Consider the context of a web search engine.

➡ Recall is not very important: there are usually far too many
relevant documents for a user to see or process all of them.

➡ In most cases, the user won’t even see the rankings after the
first page.

• Search engines are often interested in precision at the top few
ranks: prec@10, or even prec@3.

• Search engines also have access to different kinds of data,
which allows them to develop custom (proprietary, often secret)
metrics.

Reciprocal Rank
• The Reciprocal Rank (RR) is

the reciprocal of the rank of
the first relevant document.

• The Mean Reciprocal Rank
(MRR) is the RR averaged
across many queries.

• This is very sensitive to rank
position, and useful when the
user will only see a few
documents.

Non-Relevant

Relevant

Relevant

Non-Relevant

Relevant

List B

~r =

0

BBBB@

0
1
0
0
1

1

CCCCA

RR =
1

2

Leveraging Users
• Search engines also have a resource most researchers don’t:

massive numbers of daily users

• This allows them to more directly compare user satisfaction of
different systems:

➡ Do users click on the top documents, or further down the list?

➡ Do users come back to the results and click other documents?

➡ How often do users reformulate their queries?

• These values can be averaged across many users and queries
for each system to compare the systems.

A/B Testing
• One way to compare two

systems is to randomly assign
users to one of the systems
and compare user satisfaction
between groups.

• This is known as A/B Testing,
and can be used to compare
whatever metrics you desire.

A: Doc 1

A: Doc 2

A: Doc 3

A: Doc 4

A: Doc 5

List A
B: Doc 1

B: Doc 2

B: Doc 3

B: Doc 4

B: Doc 5

List B

Users !
1, 2, 4, 5

Users!
3, 6, 7

Interleaving Results
• Another way to compare to

systems is to randomly
interleave their results, and
measure which system’s
results get clicked more often.

• A new random interleaving is
chosen for each user, so we
can average out the benefits a
system may gain from one
particular ordering.

A: Doc 1

A: Doc 2

A: Doc 3

A: Doc 4

A: Doc 5

B: Doc 1

B: Doc 2

B: Doc 3

B: Doc 4

B: Doc 5

All Users

Search Engine Performance
• Many other metrics are of interest to search engines:

➡ Elapsed indexing time: How long does it take to index a document?

➡ Indexing processor time: How much CPU time does the indexing
process take? (Ignores time spent waiting for I/O.)

➡ Indexing temporary space: The amount of transient disk space used
when creating an index.

➡ Index size: The amount of disk space used for the index overall.

➡ Query throughput: number of queries processed per second.

➡ Query latency: The amount of time a user must wait before receiving a
response to a query.

Summary
• No single metric is ideal for every situation.

• You usually want to look at a combination of metrics to
examine different aspects of your system.

• It’s important to use aggregated metrics across many
queries and use statistical significance tests.

• It’s also important to analyze performance on
individual queries to understand where your system
has the most trouble

